Function reference
-
Analysis-class - Analysis S4 class
-
AnalysisData-class - AnalysisData S4 class
-
metabolyse()reAnalyse() - Perform an analysis
-
analysisData() - AnalysisData class constructor
-
dat()`dat<-`()sinfo()`sinfo<-`()raw()`raw<-`()preTreated()`preTreated<-`()features()nSamples()nFeatures()analysisResults() AnalysisDataandAnalysisclass accessors
-
clsAdd()clsArrange()clsAvailable()clsExtract()clsRemove()clsRename()clsReplace() - Sample meta information wrangling
-
AnalysisParameters-class - AnalysisParameters S4 class
-
analysisElements() - Analysis elements
-
analysisParameters() - Create an
AnalysisParametersS4 class object
-
parameters()`parameters<-`() - Get or set analysis parameters
-
`changeParameter<-`() - Change analysis parameters
-
parseParameters()exportParameters() - Parse/export analysis parameters
-
preTreatmentElements()preTreatmentMethods()preTreatmentParameters() - Pre-treatment parameters
-
modellingMethods()modellingParameters() - Modelling parameters
-
correlationsParameters() - Correlations parameters
-
aggregateMean()aggregateMedian()aggregateSum() - Sample aggregation
-
correctionCenter() - Batch/block correction
-
imputeAll()imputeClass() - Missing data imputation
-
keepClasses()keepFeatures()keepSamples() - Keep samples, classes or features
-
occupancyMaximum()occupancyMinimum() - Feature occupancy filtering
-
QCimpute()QCoccupancy()QCremove()QCrsdFilter() - Quality control (QC) sample treatments
-
removeClasses()removeFeatures()removeSamples() - Remove samples, classes or features
-
transformArcSine()transformAuto()transformCenter()transformLevel()transformLn()transformLog10()transformPareto()transformPercent()transformRange()transformSQRT()transformTICnorm()transformVast() - Scaling, transformation and normalisation methods
-
RandomForest-class - RandomForest S4 class
-
Univariate-class - Univariate S4 class
-
randomForest() - Random forest
-
anova() - ANOVA
-
ttest() - Welch's t-test
-
linearRegression() - Linear regression
-
binaryComparisons()mtry()type()response()metrics()predictions()importanceMetrics()importance()proximity()explanatoryFeatures() - Modelling accessor methods
-
tune() - Tune random forest parameters
-
mds() - Multidimensional scaling (MDS)
-
roc() - Receiver-operator characteristic (ROC) curves
-
predict() - Predict random forest model responses
-
correlations() - Feature correlation analysis
-
plotFeature() - Plot a feature
-
plotOccupancy() - Plot class occupancy distributions
-
plotRSD() - Plot RSD distributions
-
plotTIC() - Plot sample total ion counts
-
plotPCA() - Principle Component Analysis plot
-
plotLDA() - Principle Component - Linear Discriminant Analysis plot
-
plotUnsupervisedRF() - Unsupervised random forest MDS plot
-
plotSupervisedRF() - Supervised random forest MDS plot
-
plotMDS() - Multidimensional scaling (MDS) plot
-
plotROC() - Plot receiver operator characteristic (ROC) curves
-
plotMetrics() - Plot model performance metrics
-
plotImportance() - Plot feature importance
-
plotExplanatoryHeatmap() - Heatmap plot of explantory features
-
bindRows() - Bind
AnalysisDataobjects by row
-
split() - Split an
AnalysisDataobject
-
rsd() - Calculate feature relative standard deviations
-
occupancy() - Calculate feature class occupancies