Function reference
-
Analysis-class
- Analysis S4 class
-
AnalysisData-class
- AnalysisData S4 class
-
metabolyse()
reAnalyse()
- Perform an analysis
-
analysisData()
- AnalysisData class constructor
-
dat()
`dat<-`()
sinfo()
`sinfo<-`()
raw()
`raw<-`()
preTreated()
`preTreated<-`()
features()
nSamples()
nFeatures()
analysisResults()
AnalysisData
andAnalysis
class accessors
-
clsAdd()
clsArrange()
clsAvailable()
clsExtract()
clsRemove()
clsRename()
clsReplace()
- Sample meta information wrangling
-
AnalysisParameters-class
- AnalysisParameters S4 class
-
analysisElements()
- Analysis elements
-
analysisParameters()
- Create an
AnalysisParameters
S4 class object
-
parameters()
`parameters<-`()
- Get or set analysis parameters
-
`changeParameter<-`()
- Change analysis parameters
-
parseParameters()
exportParameters()
- Parse/export analysis parameters
-
preTreatmentElements()
preTreatmentMethods()
preTreatmentParameters()
- Pre-treatment parameters
-
modellingMethods()
modellingParameters()
- Modelling parameters
-
correlationsParameters()
- Correlations parameters
-
aggregateMean()
aggregateMedian()
aggregateSum()
- Sample aggregation
-
correctionCenter()
- Batch/block correction
-
imputeAll()
imputeClass()
- Missing data imputation
-
keepClasses()
keepFeatures()
keepSamples()
- Keep samples, classes or features
-
occupancyMaximum()
occupancyMinimum()
- Feature occupancy filtering
-
QCimpute()
QCoccupancy()
QCremove()
QCrsdFilter()
- Quality control (QC) sample treatments
-
removeClasses()
removeFeatures()
removeSamples()
- Remove samples, classes or features
-
transformArcSine()
transformAuto()
transformCenter()
transformLevel()
transformLn()
transformLog10()
transformPareto()
transformPercent()
transformRange()
transformSQRT()
transformTICnorm()
transformVast()
- Scaling, transformation and normalisation methods
-
RandomForest-class
- RandomForest S4 class
-
Univariate-class
- Univariate S4 class
-
randomForest()
- Random forest
-
anova()
- ANOVA
-
ttest()
- Welch's t-test
-
linearRegression()
- Linear regression
-
binaryComparisons()
mtry()
type()
response()
metrics()
predictions()
importanceMetrics()
importance()
proximity()
explanatoryFeatures()
- Modelling accessor methods
-
tune()
- Tune random forest parameters
-
mds()
- Multidimensional scaling (MDS)
-
roc()
- Receiver-operator characteristic (ROC) curves
-
predict()
- Predict random forest model responses
-
correlations()
- Feature correlation analysis
-
plotFeature()
- Plot a feature
-
plotOccupancy()
- Plot class occupancy distributions
-
plotRSD()
- Plot RSD distributions
-
plotTIC()
- Plot sample total ion counts
-
plotPCA()
- Principle Component Analysis plot
-
plotLDA()
- Principle Component - Linear Discriminant Analysis plot
-
plotUnsupervisedRF()
- Unsupervised random forest MDS plot
-
plotSupervisedRF()
- Supervised random forest MDS plot
-
plotMDS()
- Multidimensional scaling (MDS) plot
-
plotROC()
- Plot receiver operator characteristic (ROC) curves
-
plotMetrics()
- Plot model performance metrics
-
plotImportance()
- Plot feature importance
-
plotExplanatoryHeatmap()
- Heatmap plot of explantory features
-
bindRows()
- Bind
AnalysisData
objects by row
-
split()
- Split an
AnalysisData
object
-
rsd()
- Calculate feature relative standard deviations
-
occupancy()
- Calculate feature class occupancies