Perform analyses containing multiple analysis element steps.
Usage
metabolyse(data, info, parameters = analysisParameters(), verbose = TRUE)
reAnalyse(analysis, parameters = analysisParameters(), verbose = TRUE)
# S4 method for Analysis
reAnalyse(analysis, parameters = analysisParameters(), verbose = TRUE)
Arguments
- data
tibble or data.frame containing data to analyse
- info
tibble or data.frame containing data info or meta data
- parameters
an object of AnalysisParameters class containing parameters for analysis. Default calls
analysisParameters()
- verbose
should output be printed to the console
- analysis
an object of class Analysis containing previous analysis results
Details
Routine analyses are those that are often made up of numerous steps where parameters have likely already been previously established.
The emphasis here is on convenience with as little code as possible required.
In these analyses, the necessary analysis elements, order and parameters are first prepared and then the analysis routine subsequently performed in a single step.
The metabolyse
function provides this utility, where the metabolome data, sample meta information and analysis parameters are provided.
The reAnalyse
method can be used to perform further analyses on the results.
Examples
library(metaboData)
## Generate analysis parameters
p <- analysisParameters(c('pre-treatment','modelling'))
## Alter pre-treatment and modelling parameters to use different methods
parameters(p,'pre-treatment') <- preTreatmentParameters(
list(occupancyFilter = 'maximum',
transform = 'TICnorm')
)
parameters(p,'modelling') <- modellingParameters('anova')
## Change "cls" parameters
changeParameter(p,'cls') <- 'day'
## Run analysis using a subset of the abr1 negative mode data set
analysis <- metabolyse(abr1$neg[,1:200],
abr1$fact,
p)
#>
#> metabolyseR v0.15.4 Tue Sep 12 15:14:27 2023
#> ________________________________________________________________________________
#> Parameters:
#> pre-treatment
#> occupancyFilter
#> maximum
#> cls = day
#> occupancy = 2/3
#> transform
#> TICnorm
#> refactor = TRUE
#>
#> modelling
#> anova
#> cls = day
#> pAdjust = bonferroni
#> comparisons = list()
#> returnModels = FALSE
#> ________________________________________________________________________________
#> Pre-treatment …
#>
Pre-treatment ✔ [0.2S]
#> Modelling …
#>
Modelling ✔ [0.5S]
#> ________________________________________________________________________________
#>
#> Complete! [0.7S]
## Re-analyse to include correlation analysis
analysis <- reAnalyse(analysis,
parameters = analysisParameters('correlations'))
#>
#> metabolyseR v0.15.4 Tue Sep 12 15:14:28 2023
#> ________________________________________________________________________________
#> Parameters:
#> correlations
#> method = pearson
#> pAdjustMethod = bonferroni
#> corPvalue = 0.05
#> minCoef = 0
#> maxCor = Inf
#> ________________________________________________________________________________
#>
#> Correlations …
#>
Correlations ✔ [0.1S]
#> ________________________________________________________________________________
#>
#> Complete! [0.1S]
#>
print(analysis)
#>
#> metabolyseR v0.15.4
#> Analysis:
#> Tue Sep 12 15:14:27 2023
#>
#> Raw Data:
#> No. samples = 120
#> No. features = 200
#>
#> Pre-treated Data:
#> Tue Sep 12 15:14:27 2023
#> No. samples = 120
#> No. features = 48
#>
#> Modelling:
#> Tue Sep 12 15:14:28 2023
#> Methods: anova
#>
#> Correlations:
#> Tue Sep 12 15:14:28 2023
#> No. correlations = 140