Welch's t-test
Arguments
- x
S4 object of class AnalysisData
- cls
vector of sample information column names to analyse
- pAdjust
p value adjustment method
- comparisons
named list of binary comparisons to analyse
- returnModels
should models be returned
Examples
library(metaboData)
d <- analysisData(abr1$neg[,200:300],abr1$fact) %>%
keepClasses(cls = 'day',classes = c('H','5'))
## Perform t-test
ttest_analysis <- ttest(d,cls = 'day')
## Extract significant features
explanatoryFeatures(ttest_analysis)
#> # A tibble: 11 × 14
#> response comparison feature estimate estimate1 estimate2 statistic p.value
#> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 day 5~H N277 65.4 79.2 13.8 7.77 1.58e-7
#> 2 day 5~H N299 7.68 8.99 1.31 6.36 2.53e-6
#> 3 day 5~H N229 50.3 55.2 4.93 5.96 8.60e-6
#> 4 day 5~H N295 4.19 5.12 0.937 5.56 8.65e-6
#> 5 day 5~H N233 -4.65 2.68 7.33 -5.00 1.69e-5
#> 6 day 5~H N267 27.3 48.1 20.8 4.79 2.96e-5
#> 7 day 5~H N245 18.0 19.9 1.94 4.92 9.00e-5
#> 8 day 5~H N279 7.64 9.21 1.57 4.61 1.63e-4
#> 9 day 5~H N278 4.14 6.27 2.12 4.45 1.76e-4
#> 10 day 5~H N281 3.02 3.72 0.701 4.47 1.92e-4
#> 11 day 5~H N272 2.99 3.71 0.722 4.30 2.49e-4
#> # ℹ 6 more variables: parameter <dbl>, conf.low <dbl>, conf.high <dbl>,
#> # method <chr>, alternative <chr>, adjusted.p.value <dbl>