Linear regression
Usage
linearRegression(
x,
cls = "class",
pAdjust = "bonferroni",
returnModels = FALSE
)
# S4 method for AnalysisData
linearRegression(
x,
cls = "class",
pAdjust = "bonferroni",
returnModels = FALSE
)
Arguments
- x
S4 object of class
AnalysisData
- cls
vector of sample information column names to regress
- pAdjust
p value adjustment method
- returnModels
should models be returned
Examples
library(metaboData)
d <- analysisData(abr1$neg[,200:300],abr1$fact)
## Perform linear regression
lr_analysis <- linearRegression(d,cls = 'injorder')
## Extract significant features
explanatoryFeatures(lr_analysis)
#> # A tibble: 5 × 15
#> response feature r.squared adj.r.squared sigma statistic p.value df logLik
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 injorder N283 0.310 0.304 4.27 53.0 4.10e-11 1 -343.
#> 2 injorder N221 0.140 0.133 5.87 19.3 2.50e- 5 1 -382.
#> 3 injorder N255 0.119 0.111 11.1 15.9 1.17e- 4 1 -458.
#> 4 injorder N267 0.118 0.111 26.4 15.8 1.22e- 4 1 -562.
#> 5 injorder N297 0.107 0.0995 44.7 14.1 2.65e- 4 1 -625.
#> # ℹ 6 more variables: AIC <dbl>, BIC <dbl>, deviance <dbl>, df.residual <int>,
#> # nobs <int>, adjusted.p.value <dbl>