Plot a heatmap of explanatory features.
Usage
plotExplanatoryHeatmap(x, ...)
# S4 method for Univariate
plotExplanatoryHeatmap(
x,
threshold = 0.05,
title = "",
distanceMeasure = "euclidean",
clusterMethod = "ward.D2",
featureNames = TRUE,
dendrogram = TRUE,
featureLimit = Inf,
...
)
# S4 method for RandomForest
plotExplanatoryHeatmap(
x,
metric = "false_positive_rate",
threshold = 0.05,
title = "",
distanceMeasure = "euclidean",
clusterMethod = "ward.D2",
featureNames = TRUE,
dendrogram = TRUE,
featureLimit = Inf,
...
)
# S4 method for list
plotExplanatoryHeatmap(
x,
threshold = 0.05,
distanceMeasure = "euclidean",
clusterMethod = "ward.D2",
featureNames = TRUE,
featureLimit = Inf
)
# S4 method for Analysis
plotExplanatoryHeatmap(
x,
threshold = 0.05,
distanceMeasure = "euclidean",
clusterMethod = "ward.D2",
featureNames = TRUE,
featureLimit = Inf
)
Arguments
- x
object of class
Univariate
,RandomForest
orAnalysis
- ...
arguments to pass to method
explanatoryFeatures()
- threshold
score threshold to use for specifying explanatory features
- title
plot title
- distanceMeasure
distance measure to use for clustering. See details.
- clusterMethod
clustering method to use. See details
- featureNames
should feature names be plotted?
- dendrogram
TRUE/FALSE. Should the dendrogram be plotted?
- featureLimit
The maximum number of features to plot
- metric
importance metric on which to retrieve explanatory features
Details
Distance measures can be one of any that can be used for the method
argument of dist()
.
Cluster methods can be one of any that can be used for the method
argument of hclust()
.
Examples
library(metaboData)
x <- analysisData(data = abr1$neg[,200:300],info = abr1$fact)
## random forest classification example
random_forest <- randomForest(x,cls = 'day')
plotExplanatoryHeatmap(random_forest)
## random forest regression example
random_forest <- randomForest(x,cls = 'injorder')
plotExplanatoryHeatmap(random_forest,metric = '%IncMSE',threshold = 2)