Feature correlation analysis.
Usage
correlations(d, ...)
# S4 method for AnalysisData
correlations(
d,
method = "pearson",
pAdjustMethod = "bonferroni",
corPvalue = 0.05,
minCoef = 0,
maxCor = Inf
)
# S4 method for Analysis
correlations(d)
Arguments
- d
S4 object of class
AnalysisData
- ...
arguments to pass to specific method
- method
correlation method. One of
pearson
orspearman
.- pAdjustMethod
p-value adjustment method. See
?p.adjust
for available methods.- corPvalue
p-value cut-off threshold for significance
- minCoef
minimum absolute correlation coefficient threshold
- maxCor
maximum number of returned correlations
Details
Correlation analyses can be used to identify associated features within data sets. This can be useful to identifying clusters of related features that can be used to annotate metabolites within data sets. All features are compared and the returned table of correlations are thresholded to the specified p-value cut-off.
Examples
library(metaboData)
d <- analysisData(abr1$neg[,200:300],abr1$fact)
correlations(d)
#> # A tibble: 130 × 7
#> Feature1 Feature2 log2IntensityRatio coefficient `|coefficient|` p
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 N212 N227 -0.884 0.980 0.980 0.0107
#> 2 N224 N286 1.85 0.971 0.971 0.00612
#> 3 N215 N276 0.227 0.965 0.965 0.0419
#> 4 N224 N265 0.576 0.943 0.943 0.00138
#> 5 N201 N275 -1.59 0.909 0.909 0.0264
#> 6 N213 N231 -1.63 0.883 0.883 0
#> 7 N224 N225 -0.792 0.863 0.863 0.000000176
#> 8 N258 N263 -2.89 0.857 0.857 0.0181
#> 9 N267 N297 -0.671 0.853 0.853 0
#> 10 N211 N291 -1.55 0.831 0.831 0.00106
#> # ℹ 120 more rows
#> # ℹ 1 more variable: n <int>