A multidimensional scaling (MDS) plot of supervised random forest analysis
Usage
plotSupervisedRF(
x,
cls = "class",
rf = list(),
label = NULL,
shape = FALSE,
ellipses = TRUE,
ROC = TRUE,
seed = 1234,
title = "",
legendPosition = "bottom",
labelSize = 2,
...
)
# S4 method for AnalysisData
plotSupervisedRF(
x,
cls = "class",
rf = list(),
label = NULL,
shape = FALSE,
ellipses = TRUE,
ROC = TRUE,
seed = 1234,
title = "",
legendPosition = "bottom",
labelSize = 2
)
# S4 method for Analysis
plotSupervisedRF(
x,
cls = "class",
rf = list(),
label = NULL,
shape = FALSE,
ellipses = TRUE,
ROC = TRUE,
seed = 1234,
title = "",
legendPosition = "bottom",
labelSize = 2,
type = c("pre-treated", "raw")
)
Arguments
- x
object of class
AnalysisData
orAnalysis
containing analysis results- cls
information column to use for sample classes
- rf
list of additional parameters to pass to
randomForest
- label
information column to use for sample labels. Set to
NULL
for no labels.- shape
TRUE/FALSE use shape aesthetic for plot points. Defaults to TRUE when the number of classes is greater than 12
- ellipses
TRUE/FALSE, plot multivariate normal distribution 95% confidence ellipses for each class
- ROC
should receiver-operator characteristics be plotted?
- seed
random number seed
- title
plot title
- legendPosition
legend position to pass to legend.position argument of
ggplot2::theme
. Set to "none" to remove legend.- labelSize
label size. Ignored if
label
isNULL
- ...
arguments to pass to the appropriate method
- type
raw
orpre-treated
data to plot
Examples
library(metaboData)
d <- analysisData(abr1$neg[,200:300],abr1$fact)
## Supervised random forest MDS plot
plotSupervisedRF(d,cls = 'day')