Pre-treatment of spectrally processed data
tar_pre_treatment.Rd
Targets for pre-treatment of spectral processed data.
Usage
tar_pre_treatment(
name,
spectral_processed = NULL,
parameters = NULL,
cls = "class",
QCidx = "QC",
verbose = TRUE,
plots = c("PCA", "LDA", "unsupervised_RF", "supervised_RF"),
export_path = "exports/pre-treated"
)
Arguments
- name
Symbol. The name for the collection of targets. This serves as a prefix for target names.
- spectral_processed
S4 object of class
Binalysis
orMetaboProfile
. IfNULL
, target input will be expected from an existing target. See details.- parameters
An object of S4 class
AnalysisParameters
containing pre-treatment parameters or a symbol containing the name of a target to use for input parameters. IfNULL
,metaboMisc::detectPretreatmentParameters()
will be used to detect the pre-treatment parameters based on thecls
argument.- cls
The name of the sample information table column containing the sample class information for parameter detection and plotting. Ignored for parameters if argument
parameters
is notNULL
.- QCidx
QC sample class label. Ignored if argument
parameters
is notNULL
.- verbose
Show pre-treatment console output.
- plots
A character vector of plot types. Set to
NULL
to skip all plots.- export_path
Destination path of export files. Set to
NULL
to skip exports.
Details
Specifying argument spectral_processed
as NULL
enables the use additional target factories outputing spectrally processed data. See the examples below.
Examples
if (FALSE) {
## Perform pre-treatment by specifying the spectrally processed data directly
targets::tar_dir({
targets::tar_script({
library(hrmtargets)
file_paths <- metaboData::filePaths('FIE-HRMS','UrineTechnical',
ask = FALSE)
sample_info <- metaboData::runinfo('FIE-HRMS','UrineTechnical',
ask = FALSE)
spectral_processed <- binneR::binneRlyse(file_paths,
sample_info,
binneR::detectParameters(file_paths))
list(
tar_pre_treatment(example,
spectral_processed = spectral_processed)
)
})
targets::tar_make()
targets::tar_read(example_results_pre_treatment)
targets::tar_read(example_plot_PCA)
})
## Perform pre-treatment by combining the use of
## `tar_input_piggyback()` and `tar_spectral_binning()`
targets::tar_dir({
targets::tar_script({
library(hrmtargets)
name <- rlang::expr(example)
list(
tar_input_piggyback(!!name,
'FIE-HRMS_BdistachyonTechnical',
repo = 'jasenfinch/metaboData'),
tar_spectral_binning(!!name),
tar_pre_treatment(!!name)
)
})
targets::tar_make()
targets::tar_read(example_results_pre_treatment)
targets::tar_read(example_plot_PCA)
})
}