Spectral processing using spectral binning
tar_spectral_binning.Rd
Targets for spectral processing of FIE-HRMS data using spectral binning.
Usage
tar_spectral_binning(
name,
mzML = NULL,
sample_info = NULL,
parameters = NULL,
plots = c("chromatogram", "fingerprint", "TIC", "purity_dist", "centrality_dist"),
verbose = TRUE,
summary = TRUE,
export_path = "exports/spectral_processing"
)
Arguments
- name
Symbol. The name for the collection of targets. This serves as a prefix for target names.
- mzML
A character vector of mzML data file paths. If
NULL
, target input will be expected from an existing target. See details.- sample_info
A tibble containing the sample information. See details for the specifications. If
NULL
, target input will be expected from an existing target. See details.- parameters
S4 object of class
BinParameters
. IfNULL
,binneR::detectParameters()
will be used to detect the spectral binning parameters automatically..- plots
A character vector of plot types. Set to
NULL
to skip all plots.- verbose
Show spectral processing console output.
- summary
Boolean. Include additional summary targets.
- export_path
Destination path of export files. Set to
NULL
to skip exports.
Details
Specifying arguments mzML
and sample_info
as NULL
enables the use of one of the data file and sample information from one of the input target factories, tar_input_file_path()
, tar_input_grover()
or tar_input_piggyback()
. See the example using tar_input_piggyback()
below.
Examples
if (FALSE) {
## Perform spectral binning by specifying the file paths and sample information directly
targets::tar_dir({
targets::tar_script({
library(hrmtargets)
file_paths <- metaboData::filePaths('FIE-HRMS','UrineTechnical',
ask = FALSE)
sample_info <- metaboData::runinfo('FIE-HRMS','UrineTechnical',
ask = FALSE)
list(
tar_spectral_binning(example,
mzML = file_paths,
sample_info = sample_info)
)
})
targets::tar_make()
targets::tar_read(example_results_spectral_processing)
targets::tar_read(example_plot_fingerprint)
})
## Perform spectral binning by using tar_input_piggyback()
targets::tar_dir({
targets::tar_script({
library(hrmtargets)
name <- rlang::expr(example)
list(
tar_input_piggyback(!!name,
'FIE-HRMS_BdistachyonTechnical',
repo = 'jasenfinch/metaboData'),
tar_spectral_binning(!!name)
)
})
targets::tar_make()
targets::tar_read(example_results_spectral_processing)
targets::tar_read(example_plot_fingerprint)
})
}