Calculate Phenotypic Decline Index (PDI) and Decline Acuteness Index (DAI).

calcDIs(rfModels, PDI = TRUE, DAI = TRUE, invertPDI = TRUE, invertDAI = TRUE)

Arguments

rfModels

list containing random forest models as returned by rf()

PDI

TRUE/FALSE, calculate PDI?

DAI

TRUE/FALSE, calculate DAI?

invertPDI

invert the PDI scale? TRUE/FALSE. Ignored if argument PDI is FALSE

invertDAI

invert the DAI scale? TRUE/FALSE. Ignored if argument DAI is FALSE

Examples

#> #> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’: #> #> filter, lag
#> The following objects are masked from ‘package:base’: #> #> intersect, setdiff, setequal, union
## Retrieve file paths for example data files <- list.files(system.file('phenotypeDataCollectionSheets', package = 'pdi'),full.names = TRUE) ## Prepare data d <- map(files,readPhenotypeSheet) %>% map(preparePhenotypeData) %>% bind_rows() %>% siteAdjustment() %>% mutate(`Live crown ratio (%)` = liveCrownRatio(`Total height (m)`, `Lower crown height (m)`), `Crown condition (%)` = crownCondition(`Missing crown (%)`, `Crown transparency (%)`), `Crown volume (m^3)` = crownVolume(`Crown radius (m)`, `Total height (m)`, `Lower crown height (m)`, `Crown condition (%)`), `Bleed prevalence (%)` = bleedPrevalence(`Active bleed length (mm)`, `Active bleeds`, `Black staining length (mm)`, `Black staining`, `Diameter at breast height (m)`), `Agrilus exit hole density (m^-2)` = agrilusExitHoleDensity(`Agrilus exit holes`, `Diameter at breast height (m)`) ) t <- makeAnalysisTable(d) ## Generate random forest models m <- rf(t,cls = NULL,nreps = 10) ## Calculate decline indexese DIs <- calcDIs(m,DAI = FALSE,invertPDI = FALSE) %>% bind_cols(d %>% select(Location,ID,Status))