Reduce an m/z features by removing isotopic, adduct or unknown features
Source:R/reduce.R
reduce.Rd
Reduce m/z features in an analysis that includes putative molecular formula assignments by removing isotopic, adduct or unknown features.
Usage
reduce(
x,
isotopes = TRUE,
adducts = TRUE,
unknowns = FALSE,
isotopic_adducts = c("[M+Cl37]1-", "[M+K41]1+")
)
# S4 method for Analysis
reduce(
x,
isotopes = TRUE,
adducts = TRUE,
unknowns = FALSE,
isotopic_adducts = c("[M+Cl37]1-", "[M+K41]1+")
)
# S4 method for AnalysisData
reduce(
x,
isotopes = TRUE,
adducts = TRUE,
unknowns = FALSE,
isotopic_adducts = c("[M+Cl37]1-", "[M+K41]1+")
)
Arguments
- x
an object of S4 class
Analysis
orAnalysisData
- isotopes
TRUE/FALSE remove isotopic features.
- adducts
TRUE/FALSE remove features that are multiple adducts of the same molecular formula. The adduct with the highest intensity is retained for each assigned molecular formula.
- unknowns
TRUE/FALSE remove unaOssigned m/z features.
- isotopic_adducts
a vector of additional isotopic adducts to remove if argument
isotopes = TRUE
Details
If argument isotopes = TRUE
, all isotopic features are removed. If argument adducts = TRUE
, the feature with the maximum intensity for each molecular formula is retained.
Examples
## Assign molecular formulas
p <- assignments::assignmentParameters('FIE')
assignment <- assignments::assignMFs(assignments::feature_data,p)
#>
#> assignments v1.0.0 Fri Jul 21 17:29:22 2023
#> ________________________________________________________________________________
#> Assignment Parameters:
#>
#> Technique: FIE-HRMS
#> Max M: 800
#> MF rank threshold: 3
#> PPM threshold: 6
#> Relationship limit: 0.001
#> RT limit:
#> Correlations:
#> method: spearman
#> pAdjustMethod: bonferroni
#> corPvalue: 0.05
#> minCoef: 0.7
#> maxCor: Inf
#>
#> Adducts:
#> n: [M-H]1-, [M+Cl]1-, [M+K-2H]1-, [M-2H]2-, [M+Cl37]1-, [2M-H]1-
#> p: [M+H]1+, [M+K]1+, [M+Na]1+, [M+K41]1+, [M+2H]2+, [2M+H]1+
#> Isotopes: 13C, 18O, 13C2
#> Transformations: M - [O] + [NH2], M - [OH] + [NH2], M + [H2], M - [H2] + [O], M - [H] + [CH3], M - [H] + [NH2], M - [H] + [OH], M + [H2O], M - [H3] + [H2O], M - [H] + [CHO2], M - [H] + [SO3], M - [H] + [PO3H2]
#> ________________________________________________________________________________
#> No. m/z: 10
#> Calculating correlations …
#> Calculating correlations ✔ [10 correlations] [0.9S]
#> Calculating relationships …
#> Calculating relationships ✔ [2S]
#> Adduct & isotopic assignment …
#> generating molecular formulas…
#> generating molecular formulas ✔ [23.8S]
#> iteration 1…
#> iteration 1 ✔ [0.5S]
#> iteration 2…
#> Adduct & isotopic assignment ✔ [25.1S]
#> Transformation assignment…
#> iteration 1 …
#> iteration 1 ✔ [1.5S]
#> iteration 2 …
#> Transformation assignment ✔ [1.5S]
#> ________________________________________________________________________________
#>
#> Complete! [31.8S]
## Retrieve assigned data
assigned_data <- metabolyseR::analysisData(
assignments::assignedData(assignment),
tibble::tibble(sample = seq_len(nrow(assignments::feature_data)))
)
reduced_data <- metaboMisc::reduce(assigned_data)
reduced_data
#>
#> AnalysisData object containing:
#>
#> Samples: 60
#> Features: 6
#> Info: 1
#>